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File S1 

Calculation of the average number of deleterious mutations per l  loci in the eDNA pool 

Below, we derive the distribution of deleterious mutations per l  loci in the eDNA pool, assuming that the population size N  is 

very large (and so 
LLC 0m  ) and eDNA turnover is very rapid (

eDNA 1d  ). Because of rapid eDNA turnover, this 

distribution is identical to the distribution of deleterious mutations in the genomes contributed by dying individuals in one 

generation. As described in the main text, an individual with i  mutations contributes its genome to the eDNA pool with a 

probability proportional to   01 1 1
i

iD D s    . The fraction 
iG  of genomes with i  mutations that are released into 

the eDNA pool in one generation is 
0

/i i i j jj
G D n D n




  . According to Haigh (1978), 

in  is approximated by  
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Using this approximation, i ii
D n  is calculated as follows: 
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Therefore,  
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A similar calculation yields the average 
0i ii

G iG



  as follows: 
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Because  
2

0 0/ / 1 1 U

idG dD U D e      , 
iG  monotonically decreases with the increase of 0D . Thus, setting 

0 0D   maximizes 
iG  as mentioned in the main text. When 0 0D  ,  / / 1U U

iG U s Ue e    . Because 

1U  ,  / 1iG U s   (REDFIELD et al. 1997). 
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Calculation of the probability 
10P  that an HGT event transforms one but the least-loaded class into the least-loaded class 

and the probability 
01P  that an HGT event introduces at least one mutation in the least-loaded class 

Below, we derive 
10P , again assuming a very large population and rapid eDNA turnover. 

10P  can be decomposed into two 

parts: the probability (
1l ) that HGT occurs to the locus in which one but the least-loaded class has a mutation that is not 

carried by the least-loaded class; and the probability that an allele randomly drawn from the eDNA pool does not contain this 

mutation (
0Y ). 

jY is the fraction of alleles with j  mutations for any given locus in the eDNA pool. 
jY  can be calculated as 

follows. When an individual with i  mutations dies, it releases alleles that carry 0 to i  mutations into the eDNA pool. Because 

mutations are randomly distributed across l  loci, the number of mutations in one locus is binomially distributed for different 

individuals. Thus, 
0

/j j ii
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Using the approximation for in  used in the previous section, iy  is calculated as follows: 
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A similar calculation yields  00
1 1 U
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   . Using these equations, when 0 0D  , we obtain  
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Because 1U   and 
10 1l  , 

0Y  can be approximated by  11
U

lsl e


 . Thus, 10P  is calculated as follows: 
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Next, we calculate the value of l  that maximizes 
10P  ( l ) as follows. Let 

1l  . Differentiating 
10P  with respect to   

yields  
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Likewise, 01P  can be calculated as follows: 
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Dynamics of mutation fixation after the click of Muller’s ratchet 
As described in the main text (Figure 6), the speed of Muller’s ratchet is nearly independent of the turnover rate of eDNA unless 
the characteristic lifetime of eDNA exceeds the generation time of organisms by orders of magnitude (in the absence of 
population subdivision). This is because the time between the click of Muller’s ratchet and the subsequent fixation of a 
mutation is much longer than the generation time of individuals (Figure 7). In what follows, we give a more detailed explanation 
of this result, using a simple mathematical model. 

Immediately after Muller’s ratchet clicks, the least-loaded class contains multiple genotypes (i.e., 0
LLCmH  ). Let 

us consider separately each of these genotypes and the line of mutants descended from it. The population dynamics of each of 
these lines can be approximated by 

 1LLC LLC LLC LLC LLC LLCm k m k m k m k m k m kx f x Ux Ux f x           

where 
LLCm kx   is the population size of a line with LLCm k  mutations, except for 0k   (for 0k  , this approximation 

is invalid because the population dynamics of the least-loaded class is driven by genetic drift). This equation can be transformed 
into 

 
LLC LLC LLC 1m k m k m kx skx Ux       

by using 
LLCmf f U   (which is obtained by assuming 

LLC
0mn  ) and 1mf ms   (assuming 1ms  ). This 

equation indicates that the extinction of a given line (
LLC 1 0m kx    ) leads to the extinction of its descendant 

(
LLC

0m kx   ). When, for a given value of k , every line goes extinct (
LLC

0m kx   ), except for the one that descends 

from the least-loaded genotype that has fixed, 
LLCm kH   reaches a steady-state level. When this extinction occurs for all values 
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of k , a mutation is fixed in the entire population—at this point, eDNAq  reaches zero (assuming fast eDNA turnover). In the 

slow ratchet regime, the population size of the least-loaded class (
LLCmn ) is large, so that the timescale on which 

LLCmx  

decreases to zero is much slower than that on which 
LLCm kx 

 decreases to zero (i.e., 
1 1( )
LLCmn ks  ). In this case, 

LLCm kx 
 will nearly synchronously drop to zero for all k  values, so that the decrease of eDNAq  is synchronized with that of 

LLCmH . In the slow ratchet regime, 
LLCmn  is small, so that the timescale on which 

LLCmx  decreases to zero is as fast as the 

timescale on which 
LLCm kx 

 decreases to zero (i.e., 
1 1( )
LLCmn ks  ). In this case, 

LLCm kx 
 sequentially decreases to zero for 

different values of k , so that the decrease of eDNAq  is delayed with respect to that of 
LLCmH , and it takes longer than 

1s  

generations for eDNAq  to reach zero because all mutant classes must go extinct. Since the value of s  was set to 0.01 in all the 

simulations (for simplicity as described above), eDNAd  must be set substantially smaller than 0.01 to delay the decline of 

eDNAq  significantly. Since it seems unrealistic to consider a situation where 0.01s   in terms of Muller’s ratchet, we can 

conclude that slow eDNA turnover by itself is unlikely to help HGT prevent the accumulation of mutations under realistic 
conditions. 

fix /m t   as a function of popD  for various combinations of N  and 
LLCmsn  values 

The following figure supplements the data presented in Figure 8.  

 

In A, the rate of mutation accumulation fix /m t   is plotted as a function of population migration rate 
popD  for various 

values of population sizes N  and recombination rates r  with 
LLCmn  fixed at unity (i.e., slow ratchet regime). In B, 

fix /m t   is plotted as a function of 
popD  for various values of 

LLCmn  and  r  with N fixed at 
510 . 
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